DocumentationNeurondB Documentation
Dimensionality Reduction
Overview
Reduce vector dimensions while preserving important information using PCA and whitening.
PCA (Principal Component Analysis)
Reduce dimensions while preserving variance:
PCA transformation
-- PCA transformation
SELECT pca_transform(
'data_table',
'features',
128, -- target dimensions
'pca_model'
);
-- Apply PCA to new data
SELECT pca_apply(features, 'pca_model') AS reduced_features
FROM test_table;PCA Whitening
Standardize variance across components:
PCA with whitening
-- PCA with whitening
SELECT pca_whiten(
'data_table',
'features',
128,
'pca_whitened_model'
);Benefits
- Reduce storage requirements
- Speed up training and inference
- Remove noise and redundant information
- Visualize high-dimensional data
Learn More
For detailed documentation on PCA, whitening, choosing dimensions, and inverse transformation, visit: Dimensionality Reduction Documentation
Related Topics
- Clustering - Apply clustering after reduction
- Quality Metrics - Evaluate reduction quality