DocumentationNeurondB Documentation
Multi-Vector
Overview
Use multiple embeddings per document for enhanced retrieval.
Store Multiple Embeddings
Create table with multiple embeddings
-- Create table with multiple embeddings
CREATE TABLE documents (
id SERIAL PRIMARY KEY,
content TEXT,
title_embedding vector(384),
content_embedding vector(384),
summary_embedding vector(384)
);Multi-Vector Search
Search across multiple embeddings:
Search with multiple vectors
-- Search with multiple vectors
SELECT id, content,
multi_vector_search(
embed_text('query'),
ARRAY[
title_embedding,
content_embedding,
summary_embedding
],
ARRAY[0.2, 0.6, 0.2] -- weights per embedding
) AS combined_score
FROM documents
ORDER BY combined_score DESC
LIMIT 10;Learn More
For detailed documentation on multi-vector strategies, embedding selection, weight optimization, and performance tuning, visit: Multi-Vector Documentation
Related Topics
- Hybrid Search - Combine multiple search types
- Vector Search - Vector similarity