DocumentationNeurondB Documentation
Configure NeurondB for Production Workloads
Before you begin
Ensure you have:
- NeurondB extension installed and listed in shared_preload_libraries
- PostgreSQL superuser access for ALTER SYSTEM and configuration reloads
- Baseline metrics for vector workload (QPS, recall targets, latency SLO)
- Optional: GPU drivers (CUDA or ROCm) installed if enabling GPU mode
Core configuration (postgresql.conf)
Add the baseline NeurondB checks to your cluster configuration. Adjust vector index tuning, inference options, and background workers.
Baseline parameters
postgresql.conf
# Load extension
shared_preload_libraries = 'neurondb'
# Vector index tuning
neurondb.ef_search = 40 -- Search accuracy (10-200)
neurondb.m = 16 -- HNSW connections per node (4-48)
neurondb.ef_construction = 200 -- Build quality (10-500)
# Embedding inference & caching
neurondb.model_path = '/var/lib/neurondb/models'
neurondb.inference_threads = 4
neurondb.batch_inference_size = 32
neurondb.cache_size_mb = 256
# Background workers
neurondb.neuranq_enabled = on
neurondb.neuranq_naptime = 1000
neurondb.neuranmon_enabled = on
neurondb.neuranmon_naptime = 60000
neurondb.neurandefrag_enabled = on
neurondb.neurandefrag_naptime = 300000
# Performance toggles
neurondb.enable_prefetch = on
neurondb.enable_simd = onGPU acceleration (optional)
Enable GPU kernels for distance computations and embedding inference. Define memory pools and fallback behaviour.
CUDA / ROCm settings
GPU parameters
# GPU configuration
neurondb.gpu_enabled = off
neurondb.gpu_backend = 'cuda' -- or 'rocm'
neurondb.gpu_device = 0 -- GPU device ordinal
neurondb.gpu_batch_size = 8192
neurondb.gpu_streams = 2
neurondb.gpu_memory_pool_mb = 512
neurondb.gpu_fail_open = on -- Fallback to CPU
neurondb.gpu_kernels = 'l2,cosine,ip'Validate GPU runtime
Runtime validation
-- Confirm GPU kernels are registered
SELECT *
FROM neurondb_gpu_capabilities();
-- Force GPU usage for this session
SET neurondb.gpu_enabled = on;
SET neurondb.gpu_backend = 'cuda';Runtime overrides (session-level)
Adjust accuracy, caching, and inference behaviour without restarting PostgreSQL. Ideal for A/B tests and workload experiments.
Session tuning commands
Session overrides
-- Improve recall for analytics session
SET neurondb.ef_search = 120;
-- Enable GPU acceleration in this session only
SET neurondb.gpu_enabled = on;
-- Increase vector cache size temporarily
SET neurondb.cache_size_mb = 512;
-- Inspect active configuration
SELECT * FROM neurondb_config();Performance profiles
Apply recommended parameter combinations for specific workload goals. Use ALTER SYSTEM and reload to persist cluster-wide.
Low latency workloads
Latency-optimised
ALTER SYSTEM SET neurondb.ef_search = 20;
ALTER SYSTEM SET neurondb.enable_prefetch = on;
ALTER SYSTEM SET neurondb.enable_simd = on;
ALTER SYSTEM SET neurondb.gpu_enabled = on;High accuracy workloads
Recall-optimised
ALTER SYSTEM SET neurondb.ef_search = 200;
ALTER SYSTEM SET neurondb.ef_construction = 500;
ALTER SYSTEM SET neurondb.m = 32;
ALTER SYSTEM SET neurondb.batch_inference_size = 16;Large-scale deployments
High throughput
ALTER SYSTEM SET neurondb.cache_size_mb = 1024;
ALTER SYSTEM SET neurondb.inference_threads = 8;
ALTER SYSTEM SET neurondb.neuranq_batch_size = 200;
ALTER SYSTEM SET neurondb.enable_prefetch = on;Next Steps
- Performance Guide - Benchmark NeurondB under different parameter profiles and workloads.
- Background Workers - Configure neuranq, neuranmon, and neurandefrag scheduling.
- Security & Compliance - Enable encryption, differential privacy, and audit logging.